MATH0116A-F11
Intro to Statistical Science
Introduction to Statistical Science
A practical introduction to statistical methods and the examination of data sets. Computer software will play a central role in analyzing a variety of real data sets from the natural and social sciences. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, correlation, regression, contingency tables, and analysis of variance. The course has no formal mathematics prerequisite, and is especially suited to students in the physical, social, environmental, and life sciences who seek an applied orientation to data analysis. (Credit is not given for MATH 0116 if the student has taken ECON 0210 or PSYC 0201 previously or concurrently.) 3 hrs. lect./1 hr. computer lab.
A practical introduction to statistical methods and the examination of data sets. Computer software will play a central role in analyzing a variety of real data sets from the natural and social sciences. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, correlation, regression, contingency tables, and analysis of variance. The course has no formal mathematics prerequisite, and is especially suited to students in the physical, social, environmental, and life sciences who seek an applied orientation to data analysis. (Credit is not given for MATH 0116 if the student has taken ECON 0210 or PSYC 0201 previously or concurrently.) 3 hrs. lect./1 hr. computer lab.
- Term:
- Fall 2011
- Location:
- Munroe Hall 222(MNR 222)
- Schedule:
- 8:00am-8:50am on Monday, Wednesday, Friday (Sep 12, 2011 to Dec 9, 2011)
- Type:
- Lecture
- Instructors:
- Bill Peterson
- Subject:
- Mathematics
- Department:
- Mathematics
- Division:
- Natural Sciences
- Requirements Fulfilled:
- DED
- Levels:
- Undergraduate
- Availability:
- View availability, prerequisites, and other requirements.
- Course Reference Number (CRN):
- 92685
- Subject Code:
- MATH
- Course Number:
- 0116
- Section Identifier:
- A