MATH0308A-S14
Mathematical Logic
Mathematical Logic
Mathematicians confirm their answers to mathematical questions by writing proofs. But what, exactly, is a proof? This course begins with a precise definition specifying what counts as a mathematical proof. This definition makes it possible to carry out a mathematical study of what can be accomplished by means of deductive reasoning and, perhaps more interestingly, what cannot be accomplished. Topics will include the propositional and predicate calculi, completeness, compactness, and decidability. At the end of the course we will study Gödel’s famous Incompleteness Theorem, which shows that there are statements about the positive integers that are true but impossible to prove. 3 hrs. lect. DED (D. Velleman)
Mathematicians confirm their answers to mathematical questions by writing proofs. But what, exactly, is a proof? This course begins with a precise definition specifying what counts as a mathematical proof. This definition makes it possible to carry out a mathematical study of what can be accomplished by means of deductive reasoning and, perhaps more interestingly, what cannot be accomplished. Topics will include the propositional and predicate calculi, completeness, compactness, and decidability. At the end of the course we will study Gödel’s famous Incompleteness Theorem, which shows that there are statements about the positive integers that are true but impossible to prove. 3 hrs. lect. DED (D. Velleman)
- Term:
- Spring 2014
- Location:
- Warner Hall 202(WNS 202)
- Schedule:
- 1:45pm-2:35pm on Monday, Wednesday, Friday (Feb 10, 2014 to May 12, 2014)
- Type:
- Lecture
- Instructors:
- Unknown Unknown
- Subject:
- Mathematics
- Department:
- Mathematics
- Division:
- Natural Sciences
- Requirements Fulfilled:
- DED
- Levels:
- Undergraduate
- Availability:
- View availability, prerequisites, and other requirements.
- Course Reference Number (CRN):
- 22473
- Subject Code:
- MATH
- Course Number:
- 0308
- Section Identifier:
- A