MATH 0723

Topics in Analysis Seminar

Topics in Analysis Seminar
The foundation in analysis covered in MATH 0323 provides the tools necessary to engage a range of important and fascinating topics of both a pure and applied nature. In the first part of this seminar we will collectively work our way through the theory of Lebesgue measure and integration, studying the classical Banach spaces of integrable functions. After this common introduction, students will each choose a project from a range of options that includes topics in functional analysis (e.g., the open mapping theorem, the Hahn-Banach theorem) or more classical real analysis (e.g., Fourier series, orthogonal polynomials, the gamma function). Working independently and in small groups, students will gain experience reading advanced sources and communicating their insights in expository writing and oral presentations. This course fulfills the capstone senior work requirement for the mathematics major. (MATH 0323 or by approval). 3 hrs. sem.
Natural Sciences
Requirements Fulfilled:


Spring 2019

MATH0723A-S19 Seminar (Abbott)