Middlebury
header image

MATH0122

Calculus II

Calculus II
A continuation of MATH 0121, may be elected by first-year students who have had an introduction to analytic geometry and calculus in secondary school. Topics include a brief review of natural logarithm and exponential functions, calculus of the elementary transcendental functions, techniques of integration, improper integrals, applications of integrals including problems of finding volumes, infinite series and Taylor's theorem, polar coordinates, ordinary differential equations. (MATH 0121 or by waiver) 4 hrs. lect./disc.
Subject:
Mathematics
Department:
Mathematics
Division:
Natural Sciences
Requirements Fulfilled:
DED
Equivalent Courses:

Sections

Spring 2015

MATH0122A-S15 Lecture (Schumer)
MATH0122B-S15 Lecture (Swenton)
MATH0122C-S15 Lecture (Dorman)

Fall 2014

MATH0122A-F14 Lecture (Dorman)
MATH0122B-F14 Lecture (Dorman)
MATH0122C-F14 Lecture (Kubacki)
MATH0122D-F14 Lecture (Abbott)

Spring 2014

MATH0122A-S14 Lecture (Peterson)
MATH0122B-S14 Lecture (Velleman)

Fall 2013

MATH0122A-F13 Lecture (Abbott)
MATH0122B-F13 Lecture (Schmitt)
MATH0122C-F13 Lecture (Schumer)
MATH0122D-F13 Lecture (Peterson)

Spring 2013

MATH0122A-S13 Lecture (Schumer)
MATH0122B-S13 Lecture (Schmitt)
MATH0122C-S13 Lecture (Emerson)

Fall 2012

MATH0122A-F12 Lecture (Emerson)
MATH0122B-F12 Lecture (Olinick)
MATH0122C-F12 Lecture (Olinick)

Spring 2012

MATH0122A-S12 Lecture (Emerson)
MATH0122C-S12 Lecture (Schmitt)
MATH0122D-S12 Lecture (Schmitt)

Fall 2011

MATH0122A-F11 Lecture (Emerson)
MATH0122B-F11 Lecture (Abbott)
MATH0122C-F11 Lecture (Bremser)
MATH0122D-F11 Lecture (Bremser)

Spring 2011

MATH0122A-S11 Lecture (Schmitt)
MATH0122B-S11 Lecture (Schmitt)
MATH0122C-S11 Lecture (Schumer)

Fall 2010

MATH0122A-F10 Lecture (Emerson)
MATH0122B-F10 Lecture (Emerson)
MATH0122C-F10 Lecture (Olinick)
MATH0122D-F10 Lecture (Olinick)

Spring 2010

MATH0122A-S10 Lecture (Emerson)
MATH0122B-S10 Lecture (Schumer)
MATH0122C-S10 Lecture (Schumer)

Fall 2009

MATH0122A-F09 Lecture (Emerson)
MATH0122B-F09 Lecture (Emerson)
MATH0122C-F09 Lecture (Bremser)
MATH0122D-F09 Lecture (Bremser)

Spring 2009

MATH0122A-S09 Lecture (Schumer)
MATH0122B-S09 Lecture (Schumer)
MATH0122C-S09 Lecture (Swenton)

Fall 2008

MATH0122A-F08 Lecture (Swenton)
MATH0122B-F08 Lecture (Swenton)
MATH0122C-F08 Lecture (Murray)
MATH0122D-F08 Lecture (Murray)

Spring 2008

MATH0122A-S08 Lecture (Schumer)
MATH0122B-S08 Lecture (Schumer)
MATH0122C-S08 Lecture (Schmitt)

Fall 2007

MATH0122A-F07 Lecture (Schmitt)
MATH0122B-F07 Lecture (Schmitt)
MATH0122C-F07 Lecture (Dorman)
MATH0122D-F07 Lecture (Dorman)

Spring 2007

MATH0122A-S07 Lecture (Emerson)
MATH0122B-S07 Lecture (Swenton)
MATH0122C-S07 Lecture (Swenton)

Fall 2006

MATH0122A-F06 Lecture (Emerson)
MATH0122B-F06 Lecture (Abbott)
MATH0122C-F06 Lecture (Schmitt)
MATH0122D-F06 Lecture (Schmitt)

Spring 2006

MATH0122A-S06 Lecture (Dorman)
MATH0122B-S06 Lecture (Swenton)
MATH0122C-S06 Lecture (Swenton)

Fall 2005

MATH0122A-F05 Lecture (Olinick)
MATH0122B-F05 Lecture (Olinick)
MATH0122C-F05 Lecture (Schmitt)
MATH0122D-F05 Lecture (Schmitt)

Spring 2005

MATH0122A-S05 Lecture (Peterson)
MATH0122B-S05 Lecture (Peterson)
MATH0122C-S05 Lecture (Albert)

Fall 2004

MATH0122A-F04 Lecture (Olinick)
MATH0122B-F04 Lecture (Olinick)
MATH0122C-F04 Lecture (Dorman)
MATH0122D-F04 Lecture (Dorman)
MATH0122E-F04 Lecture (Peterson)

Spring 2004

MATH0122A-S04 Lecture (Emerson)
MATH0122B-S04 Lecture (Dorman)
MATH0122C-S04 Lecture (Dorman)

Fall 2003

MATH0122A-F03 Lecture (Olinick)
MATH0122B-F03 Lecture (Olinick)
MATH0122C-F03 Lecture (Peterson)
MATH0122D-F03 Lecture (Peterson)
MATH0122E-F03 Lecture (Emerson)